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Benettin’s classical method for the calculation of the Lyapunov exponent spectra of smooth flows
is applied to the case of systems with elastic hard collisions. As illustrative examples the maximum
Lyapunov exponent is calculated for the two-dimensional periodic Lorentz gas over a wide density

range, and for the Sinai stadium billiard.
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I. INTRODUCTION

A useful way to characterize and quantify chaotic phe-
nomena arising in dynamical systems is by means of
the so-called Lyapunov exponents, which describe the
temporal evolution of small perturbations of the initial
conditions. For the calculation of complete Lyapunov-
exponent spectra of autonomous systems of ordinary dif-
ferential equations the algorithm of Benettin et al. has
become a well established method [1,2]. Our goal in this
paper is to develop a scheme for the application of this
method to systems with elastic hard collisions, like bil-
liards, hard sphere fluids, or the Lorentz gas. In order
to define the concepts and terms we are going to use in
the following paragraphs, we give a brief overview of the
classical algorithm mentioned above.

Let us consider a dynamical system given by IV coupled
first-order differential equations:

I(t) = F(T(t))- (1)

Since we are interested in the time evolution of a small
perturbation (t) of a trajectory I'(t), we linearize the
equations of motion obtaining

50 = 51|,y 0O 2)

for the temporal evolution of the vectors §(t) in the tan-
gent bundle of the system. &(¢) will be referred to as an
offset vector, T'(t) is the trajectory in phase space, and
D = 8F /8T is the N x N Jacobi matrix of the system.
Obviously, the matrix D depends on the instantaneous
phase I'(¢).

Formally the solution of the system (2) can be written
as

4(t) = L(t;0)6(0), 3)

where L(t;0) is the propagator for the offset vector &(¢)
and is given by the time-ordered exponential
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L(t;0) = exp 4 {/Ot D(I‘(t’))dt’} . (4)

For ergodic systems obeying very general assumptions
Oseledec [3] has shown that for almost every initial con-
dition of the trajectory there exists a set of offset vectors

8;(t),i=1,...,N, such that the numbers
1 [L(T30)640)]
A= Jim 7l 18:(0)] )

exist and are independent of the initial conditions. These
numbers give the logarithmic contraction or expansion
rates in different directions of phase space, and are inde-
pendent of the coordinate system and the metric. Their
whole set is called the Lyapunov spectrum of the sys-
tem. An initial perturbation of a trajectory in a direction
corresponding to a positive Lyapunov exponent tends to
grow exponentially, which means that the offset vector
4(¢t) for a neighboring trajectory, differentially separated
from the reference trajectory I'(¢), diverges exponentially
with t — oo. Conversely, trajectories separated by an
infinitesimally small vector in a direction with negative
Lyapunov exponent converge exponentially. A dynamical
system with at least one positive Lyapunov exponent is
called chaotic. As usual we order the Lyapunov spectrum
such that A\; > Ay > --- > Apn.

For the calculation of the Lyapunov spectrum accord-
ing to the above mentioned method it is necessary to
integrate simultaneously the equations of motion (1) for
the reference trajectory I'(t) and for N complete equa-
tion systems (2) for the offset vectors §;(t), ¢ =1,...,N.
If the vector function F(I'(t)) and the matrix D(I"(t))
are smooth functions of their argument, this task may
be accomplished by any standard integrator [4]. Since
the offset vectors grow with exponential rates and, more-
over, tend to align in the direction of the eigenvector of
L(t;0) associated with the largest eigenvalue, they must
be periodically reorthonormalized [1,2]. The Lyapunov
exponents can then be obtained from the time average of
the logarithm of the respective renormalization factors.

This method has been applied to a great number of dif-
ferent dynamical systems with phase space dimension NV
ranging from N = 3 to N = 400 for the evaluation of the
full spectrum [5], and to N = 129600 for the maximum
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exponent [6]. But all these systems have in common that
their temporal evolution is governed by an equation like
(1) with a differentiable function F(T'). If this smooth-
ness condition is not fulfilled due to the occurrence of a
hard-wall potential, a straightforward application of the
method is not possible. In order to overcome this prob-
lem we propose a new scheme, which allows the calcu-
lation of Lyapunov exponents in systems with hard-core
interactions as well as in hybrid systems with a mixture
of smooth and hard-core interactions. After the descrip-
tion of this method in Sec. II we apply it in Sec. III to
the two-dimensional periodic Lorentz gas with scatterers

on a triangular lattice, and to the famous Sinai stadium
billiard.

II. METHOD

For the sake of simplicity and without loss of general-
ity, we consider a point particle in two dimensions whose
motion is described almost always by an equation of type
(1). At discrete times the particle collides with a hard,
generally curved obstacle, which causes both the trajec-
tory and the offset vectors to change in a noncontinuous
way. In the following we assume the border of the obsta-
cle to be at least piecewise smooth. Figure 1 shows the
geometry of such a collision, where p is the momentum
of the particle immediately before the collision, and p’
immediately after the collsion. The vectors t and t’ are
unit vectors, which are normal to p and p’, respectively,
and which can be generated from the momentum vectors
through a m/2-anticlockwise rotation D™/2:

1
D1\'/2pl. (6)

tz‘]:“'D"/zp tlZ—I
Ip’|

Ip|

The obstacle is given by a curve k(s), which is
parametrized with the arclength s. The vector u = k(s)
is tangent to the obstacle in the collision point, and is
also a unit vector. In the following the curvature of the
obstacle is of crucial importance in our considerations.
It is defined as the rate of change of the tangent-vector

l

FIG. 1. The collision geometry.
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orientation with growing arclength, and is denoted by k.
For a curve parametrized with the arclength x is equal
to the magnitude of the second derivative of k(s) with
respect to s:

w = |ik(s). (7)

By normalizing the curvature vector k(s) one obtains
the principal normal vector h(s) = k(s)/x. With these
definitions we can write down the effect of a hard elastic
collision on the offset vectors § = {dq,dp}. First we
note that the reference trajectory undergoes the following
noncontinuous change:

q — q,
p - p. ®)

Here, and in the following expressions the specular reflec-
tion of a vector on the tangent in the collision point is
denoted by a prime. Obviously the position of the parti-
cle is the same immediately before and after the collision,
whereas the momentum of the particle is simply reflected
on the obstacle. Next we consider the position compo-
nents dq = {dz,dy} of the offset vector §. Neglecting
quantities of second order and noting that the vector §q"
vanishes at the collision, one infers from Fig. 2 that

dq —dq, (9)

which corresponds to a simple reflection at the collision
point. In calculating the effect of the collision on the mo-
mentum components ép = {dp.,dpy} of the offset vector
it is necessary to account for the fact that a displacement
dq in the configuration space leads to a collision point,
which is displaced by the arclength §s from the collision
point of the reference trajectory. This causes a change in
the direction of the outgoing momentum and generates
an additional term dp” (see Fig. 2) in the expression
for the vector ép after the collision. It follows from the
definition of the curvature, that the orientation of the

FIG. 2. The effect of a collision on the offset vector §.
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tangent and therefore also of the principal normal vector
changes by the (inifinitesimal) angle d¢:

¢ = Kés. (10)

Since both the angle of incidence and angle of reflection
are altered by 8¢, we obtain

5p — 6p’ — 26¢ |p|t'. (11)

The first term on the right hand side corresponds to a
simple specular reflection on the tangent and is indepen-
dent of the curvature and the spatial component dq of
the offset vector. The second term is a consequence of
the rotation of the outgoing momentum of the displaced
trajectory with respect to the outgoing momentum of
the reference trajectory. Taking into account that the
displacement §s along the obstacle is given by

_6q-t _dq-t
9s = cosa p-h [Pl

(12)

the momentum components are changed by the hard col-
lision according to

6qt 2
r_ ’
op — 6p 2I€p'h Ip|"t'. (13)

Equations (1) and (2) give us the temporal evolution of
the system between hard collisions, and the relations (8),
(9), and (13) tell us how the configuration-space com-
ponents éq and the momentum-space components §p of
the offset vector § change during an instantaneous hard
elastic collision with a curved surface. The results (9)
and (13) are accurate to first order as required for the
evaluation of Lyapunov exponents and can be easily in-
corporated in the standard algorithm described in the
Introduction. It should be clear that our method is the
exact limiting case of the algorithm working with finite
distances between neighboring trajectories in phase space
and that the dynamics specified by (8), (9), and (13) oc-
curs in tangent space.

III. APPLICATIONS
A. The periodic Lorentz gas

We consider a point particle of mass m = 1, the so-
called wanderer, moving in a plane between hard disks
with radius R = 1, their centers being fixed on the sites
of a regular triangular lattice (see Fig. 3). Between the
hard collisions, which are assumed to be elastic, the wan-
derer moves freely and with constant velocity. Since the
Lyapunov exponent of such a system is obviously pro-
portional to the velocity of the wanderer, it is sufficient
to consider one single velocity, and we take v = 1. For
R = 1 the geometry of the system is completely defined
by the density p = 1/A, where A is the area of the hexag-
onal unit cell of the triangular lattice (to avoid confusion
we note that in Ref. [7] the density is defined as precisely
twice our value). In what follows we allow the hard scat-
terers to intersect each other. This can be justified by the
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FIG. 3. The geometry of the periodical 2D Lorentz gas.
R is the radius of the scatterer and p denotes the unstable
periodic orbit discussed in the text. In all simulations reduced
units are used for which the scatterer radius R, the wanderer
velocity v, and the wanderer mass m are unity.

observation that the system described above is equivalent
to a system, in which all scatterers as well as the wan-
derer are replaced by hard disks with radius R’ = R/2.
For such high densities the free volume accessible to the
wanderer is obviously separated into disjoint cells.

In the time between the collisions the wanderer moves
according to the free-particle Hamiltonian H = (p2 +
p3)/2m:

q QO+P0t, (14)
P = Po,

where qo and pg are the respective position and momen-
tum of the wanderer immediately after the last collision,
and t is the time passed since then. The offset vectors
evolve according to

dq = dqo +dpot

6= ! 15
{ 5p = Gpo, (15)

where dqp and dpo are the respective position and mo-
mentum components of §(t) immediately after the last
collision. The effect of the hard collision on the trajec-
tory of the wanderer is given by Eq. (8), which corre-
ponds simply to a specular reflection. In order to apply
Egs. (9) and (13) we observe that the curvature of the
circular scatterers K = 1/R, and we obtain

240q-t

) op — =
P —Jp R cosa

Ip|t". (16)

Here, a is the angle of incidence of the wanderer. With
these expressions we are now able to calculate the spec-
trum of Lyapunov exponents with Benettin’s classical al-
gorithm. The phase space is four dimensional, but two of
the Lyapunov exponents vanish due to the energy conser-
vation and the fact that a perturbation in the direction
of the phase flow does not exhibit exponential growth
or decay. Due to the symplectic nature of our system
the two remaining exponents are of equal size and op-
posite sign and form a Smale pair [8]. The sum of all
Lyapunov exponents vanishes as required by Liouville’s
theorem. Thus, it suffices to evaluate the maximum ex-
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ponent. Nevertheless the fulfillment of these symmetry
conditions for the complete spectra may be regarded as
a useful numerical test for the algorithm. In all our sim-
ulations these properties of the Lyapunov spectrum have
been checked and verified.

Figure 4 shows the maximum Lyapunov exponent A;
of the periodic Lorentz gas as a function of density. The
numerical convergence of the algorithm is rather good:
after about 10°® collisions the relative error in the Lya-
punov exponent is less then 0.25%. In Fig. 4 the number
of collisions per run varied from 10° at low densities to
107 at high densities. Three special densities are marked
by vertical broken lines. Systems with a density below
po = V/3/8 ~ 0.2165 have an infinite horizon, whereas
the horizon is finite for densities greater than po. If the
density exceeds p; = \/5/6 ~ 0.2887, the wanderer is
confined to a single cage formed by the scatterer and
the diffusion constant vanishes. p; is referred to as the
close packed density of the scatterers. We observe a slight
change in the functional form of A;(p) as p passes through
p1. Finally, the density p; = 2v/3/9 ~ 0.3849 corre-
sponds to the density, for which the free volume accessi-
ble to the wanderer vanishes. If the density approaches
this limiting value, the collision rate and therefore also
the Lyapunov exponent diverge.

In a recent paper van Beijeren and Dorfman [9], using
a Lorentz-Boltzmann equation, presented a calculation of
the Lyapunov exponent of the Lorentz gas with random
scatterers for the limiting case of low densities. They
obtain

A =2pRu[l —In2 - C —In(pR?)] forp<1, (17)

where v is the velocity of the wanderer and C ~ 0.577216
is Euler’s constant. A comparison of this expression
(full line) with our results (diamonds) for low densities is
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FIG. 4. Maximum Lyapunov exponent A; vs density p in
the periodical 2D Lorentz gas. The three vertical broken lines
mark the densities po (transition from infinite to finite hori-
zon), p1 (wanderer confined to the cage), and p2 (zero free
volume for the wanderer), respectively, as discussed in the
text. Reduced units are used for which the scatterer radius
R, the wanderer velocity v, and the wanderer mass m are
unity.
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shown in Fig. 5. The agreement of the results is satisfac-
tory even if the analytical estimate (17) assumes a ran-
dom distribution of scatterers, whereas our results corre-
spond to a regular lattice of scatterers. The relative dif-
ference between the results approaches zero in the limit
p — 0. We calculated also the maximum Lyapunov ex-
ponent for a system of 10000 randomly distributed scat-
terers with periodical boundary conditions. As in Ref.
[9] the scatterers are not allowed to overlap and the Lya-
punov exponents are obtained by averaging over different
random configurations of scatterers. The results of this
calculation are shown in Fig. 5 and are marked by filled
squares. For small densities the results agree perfectly
with the Lorentz-Boltzmann-equation approach of van
Beijeren and Dorfman [9]. It is interesting to note that
the Lyapunov exponents for different random scatterer
configurations differ by about 0.1%.

Stoddard and Ford [10] derived an approximate expres-
sion for \; for a system of hard particles. It is surprising
that their rough estimate leads to exponents in rather
close agreement with our model for densities p < 0.005.
For larger densities their numbers deviate significantly to
more negative values.

Another check of our algorithm is possible by evaluat-
ing the Lyapunov exponents of unstable periodic orbits
described in [11]. In this paper the authors consider the
simple periodic orbit of the wanderer bouncing between
two scatterers, which is denoted with p in Fig. 3. They
obtain

0.1 4

A

0.01 | B!

s L
0.0001 0.001 0.01 0.1

p

FIG. 5. Lyapunov exponent A; at low densities p in the pe-
riodical 2D Lorentz gas. The full line is the approximation of
van Beijeren and Dorfman [9] for a system of randomly dis-
tributed scatterers, the diamonds are our numerical results
for a periodic arrangement of scatterers (see text). The filled
squares are the results for a numerical simulation with ran-
domly distributed scatterers and periodical boundary condi-
tions. In this simulation the maximum Lyapunov exponent
A1 has been calculated as an average over 10 different random
configurations of 10000 scatterers, which where not allowed to
overlap. Reduced units are used for which the scatterer ra-
dius R, the wanderer velocity v, and the wanderer mass m
are unity.
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\ = v 1 a—R+(az—2Ra)1/z
Ta—2r " R ’

(18)

where a is the distance between the centers of the two
reflecting disks. The results of our numerical simulation
are in excellent agreement with this expression.

There is also another method by Sinai [12,13] for
the evaluation of maximum Lyapunov exponent of the
Lorentz gas. It is based on the curvature of a “wave
front” expanding in the system of scatterers. Other at-
tempts are based on an expansion of the dynamics in
terms of unstable periodic orbits both in equilibrium
[14,7] and in nonequilibrium steady states [15,16]. Our
method is more versatile and exact. It may be used for
the calculation of the full spectrum of exponents and may
easily be generalized to higher dimensions.

B. The stadium billiard

As a second illustrative example we apply our recipe
to the so-called Sinai stadium billiard [12,17-19]. This
simple model is a special case of a billiard system, which
generally consists of a point particle moving inside a two-
dimensional domain @ with closed boundary 8Q. Inside
Q@ the particle moves freely with constant velocity v =
1. At collisions with the boundary 8Q the particle is
reflected elastically. The border of the stadium billiard
consists of two arcs of radius R connected by two parallel
segments with length 2a and is schematically depicted in
Fig. 6. The circular components have a focusing effect
on a set of neighbouring trajectories, whereas the linear
parts are neutral in this context. In the case of a > 0 the
initially focused trajectories are dispersed after reaching
the so-called conjugate point leading to a net dispersing
effect and therefore to chaotic motion. It can be proved
that for a = 0 the system is completely integrable. For
a > 0 it is a K system and has a positive Lyapunov
exponent [20].

As in the case of the Lorentz gas the trajectory and
the offset vectors evolve according to Egs. (14) and (15)
in the time between successive collisions with the border.
At the collision with the border the particle is reflected
elastically and the effect of the collision on the offset ve-
tors is again described by Egs. (9) and (13). Since the

s

2a

FIG. 6. Geometry of the stadium billiard.
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FIG. 7. Lyapunov exponent in the stadium billiard vs
v = a/R for constant area A = A(1,1) of the billiard.

collision takes place on the inner side of the border, we
obtain the following expression for the position and mo-
mentum components of the offset vector:

éq — 6q/,
op — Op' +2x22% |p|t’.

cosa

(19)

If the collision takes place in the curved part of the bor-
der, the curvature K = 1/R. On the linear parts of the
border the curvature x vanishes.

With these expressions we calculated the maximum
Lyapunov exponent for a range of the parameter v =
a/R. As before it is sufficient to consider the case v = 1.
As can be seen by similarity considerations, the Lya-
punov exponents of systems with the same ratio v but
different size are related by [17]

A(r, A) = VA/A' A(v, 4), (20)

where A(a, R) = 4aR+ mR? is the area of the domain Q.
In Fig. 7 we show \; as a function of v = a/R for a con-
stant area A = A(1,1). The number of collisions with the
wall is approximately 5 x 107 for each run. Our results re-
produce exactly those of Benettin and Strelcyn [17], who
calculated the maximum Lyapunov exponent with finite
instead of differential offset vectors. Our method of dif-
ferential vectors is more elegant and—in addition—offers
an increase in performance since in the finite difference
case the collision point must be determinded both for the
reference trajectory and the trajectories displaced by a
small but finite vector. Our results agree also with the
results of a recent paper [21], in which the authors have
calculated the maximum Lyapunov exponent by averag-
ing over unstable periodic orbits. As one can infer from
Fig. 7 the maximum Lyapunov exponent vanishes for
v = 0 and increases very rapidly for v > 0. It reaches
its maximum value in the range v = 1.2 — 1.4. The
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limit v — oo corresponds to an integrable system, and
A1 should vanish again.

IV. CONCLUSION

We have presented a simple method for the calculation
of the full set of Lyapunov exponents in systems with
elastic hard collisions. The application of our method
to dissipative systems is straightforward. This means
that nonequilibrium systems in stationary states, like the
Lorentz gas with external field and thermostat [22,23],
can be easily treated with our algorithm [24]. Finally, we
want to mention that Lyapunov exponent spectra can

CH. DELLAGO AND H. A. POSCH 52

be calculated also for hard sphere fluids in equilibrium
and nonequilibrium conditions, as will be shown in future
work.
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FIG. 3. The geometry of the periodical 2D Lorentz gas.
R is the radius of the scatterer and p denotes the unstable
periodic orbit discussed in the text. In all simulations reduced
units are used for which the scatterer radius R, the wanderer
velocity v, and the wanderer mass m are unity.



